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HUMAN COMFORT RESPONSE TO

RANDOM MOTIONS WITH A DOMINANT LONGITUDINAL MOTION

By Ralph W. Stone, Jr..

SUMMARY

The effects of random longitudinal acceleraticros on passenger ride comfort
response were examined on the Langley Visual-Motior. Simulator. The effects of
power spectral density shape and frequency ranges from 0 to 2 llz were studied.
This paper presents the data obtained. There existed during this study motions
in all other degrees of freedcna, as well as the intended longitudinal motion,
because of the characteristics of the simula • -	 These unwanted motions may
introduce some interactive effects which sh.-	 oe considered in any
of the data.

INTRODUCTION

An increase in short-'caul operations using short take-off and landing
aircra:t is expected (ref. (1)). Such operations, which are at low altitudes
and with relatively low wing loading aircraft, will probably lead to conditions
of flight where the ride quality will be degraded compared to that experienced
in current jet aircreft operations. Accordingly, the consideration of ride
comfort will probably become increasingly important. Understanding and defining
the problems of passenger acceptance, and developing methods and systems for
aircraft design that will allow for acceptable ride comfort, are encompassed in
a NASA program (ref. (2)). This program includes the simultaneous measurement
of subjective ride comfort responses and vehicle motions made on both scheduled
airlines and s imt.lators .

Much data have been obtained and ride comfort indices and acceptance
ratings have been developed based on human exposures to the full six degree of
freedom motion of aircraft (refs, (3), (4), (S), (6), and (7), for example).
The interactions of the various degrees of freedom of motion as they affect
human comfort responses is not known. The nature of these interactions is
important to the understanding of the total comfort response. In addition,
data available for subjective comfort r^sponses to single degree of freedom
motions exist primarily for sintisoidal oscillations at specific frequencies
(ref. (8)).

The influence of single degree of freedom motions having random oscilla-
tions typical of those of aircraft in turbulence also is not knowTI. Typical
airplane response to turbulence have power spectra shape that decreases
rapidly beyond 1 to 2 Hertz. However, some response motions of the airplane
(particularly the angular motion) have a somewhat flatter power spectra shape.
It is not known if these different spectral shapes will have a significant



influence on the ride comfort. Consequently, a progri.m to measure human comfort

response ratings in single degree of freedom random motions and the interactions

of these motions in two, three, and six degrees of freedom using two types of

power spectra shaprs and three frequency ranges is in progress at the NASA
Langley Research Center. References (9) and (10) present th o data obtained for

the studies of the subjective ride comfort response to random vertical and

transverse accelerations, respectively. The present paper presents the subjec-

tive ride comfort response ratings obtained when using oscillations in the
longitudinal degree of freedom on the Visual-Motion Simulator at Ixngley (fig. 1).

SYMBOM

0 	 ccandard deviation of ride quality rating

s
g	 acceleration due to gravity

Hz	 frequency, cps

TESTS AND TEST CONDITIONS

The investigation was initiated to measure human comfort response ratings

to sing : degree of freedom motions and to multiple degree of freedom motions
using random motions like those experienced in airplane flight. A program was
developed using 14 separate simulator "flights," earn flight consisting of

24 segments. Each of the segments consisted of either a single degree of

freedom motion, a two-, three-, or six -degree of freedom motion. The segments

for the six si ngle degrees of freedom (vertical, tranaverae. longitudinal
accelerat+-- and pitch, roll and yaw rates) were scattered throughout six

flights.	 _.y one single degree of freedom was contained within only two of the

six flights. The various two degrees of freedom segments were similarly

scattered throughout four flights. Tile various three degrees of freedom segments
were scattered throughout cwo flights, and six degrees of freedom similarly in

two flights.

As mentioned previously, typical airplane responses to turbulence have

power spectra that decreases rapidly beyond 1 Lo 2 Hertz. However, some
responses, particularly for angular motions, have flatter power spectra. In
order to investigate the effect of spectral shape and the frequency distribution
of the response power on ride comfort, six power spectral densit y distributions

were developed to drive the simulator. There were two general groups, the first

termed "typical," having variation with frequency lake those experienced on
typical aircraft and the second ten.,ted "flat"' a;ith shallower decreases at the

high frequencies. In each group, three distinct frequency distributions were

used; the first with peak power centered between 0 and 1 Hz, the Fecond

between 0 and 2 11z, and the third between 1 and 2 Hz.

2



The six power spectra shapes were tailored by filtering the output of a

random number generator. The nominal shapes of these spectra are shown in

figure 2. In designing the spectra shapes to suit the simulator characteristics

the "flat" spectra were not as flat as was intended and in figure 2 appear

similar to those of zhe "typical" spectra. However, the "flat" spectra have
more power in the 1 to 3 Hz range than the typirtl spectra for conditions with

the same peak power. This increase in power, over the typical spectra, ranges

from 35 percent for Cie 1 to 2 llz spectra to 170 percent for the 0 to 1 liz
spectra.

The nominal spectra shown in figure 2 are normalized to have v peak of 1.

For the actual motions on the simulator the magnitude was raised for each
spectra t ype by adjusting the Rain of the input signal. :our magnitudes were
examined for each of th , six spectra shapes. Thus, the 24 flight segments
were developed for use in the study,

The kangley Visual - Motion Simulator (VMS) is primarily used for piloted
flight, stability, control, and display studies, and does not contain a
passenger compartment. The passengers used in this study sat in the pilot's
compartment and rode passively, the controls and instruments being inoperative

for these experiments. Figure 3 is ar, interior view of 'iie cockpit. Two

passengers rode each experimental "flight."

The normal operational envelope of motion frequencies and magnitudes of

the VMS are presented in reference (2). The largest practicable input
frequencv is about 3 Hz. As noted in references (6) and (7), the major energy

in aircraft motions is in the region of 2 Hertz and less.

The VMS is a large mechanical device with six ' ►vdraulically operated
telescoping legs and associated switching valves. The desired motions are

developed by extending the legs in a prescribed manner. In order to obtain the
desired motions without exceeding the mechanical limitations of the simulator,

various control and limiting s ystems were incorporate!. The simulator, as a

dynamic device. has its own natural frequencies and damping, and thus exerts an

effect on the resulting motion. For precise developmen t_ of a single degree of
freedom, the six legs would have to move synchronously. Because of friction in
the hydraulic systems a •ri valves, and variations in the hydraulic pressure, it

was not possible to produce the precise conditions necessary_ for one degree of

freedom. Therefore, the motions developed by the s'_^►u'_aror had the longitudinal
acceleration as the dominant motion with various lesser amounts of the other

five degrees of freedom present. For these same reaeo s, the motions were not

precisel y duplicated even for identical computer inputs. As a result of the
dynamic characteristics of the simulator, the Actual mot;o-► power spectra
experienced by the subjects was enmek'-- t different the- r`ie nominal npecrra
used as input to the computer. The four different magnitudes mentioned

previously were supposed to he alike for each input spectra shape; 1,owever,
because of the dynamic response characteristics of '_he e'm• ► lstor, it provided
different RMS values of the longitudinal accelerations for the different spectra
shapes.

F
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4	 Typical

5

6

0-1 liz

0-2 liz

1-2 liz

i

Each "flight" was flown four to five times s ,3 that 8 to 10 subjects
experienced each motion. As these "flights" were not precisely duplicated,
the data discussed in the "Data" section of this paper are the average values of
the four or five "flights" used. The standard deviation of the longitudinal

accelerations from the average values for the various segments in terms of

percent of the average values is 6.39 percent. The maximum deviation was

11.06 percent. The actual output of the simulator for a test segment represent-

ing most nearly the average output for a given input segment and, therefore, the
motions essentially experienced by the subjects are presented in figures 4 to 9.
Those include time Kist — 1 es for all six degrees of freedom, histograms of the
longitudinal acceleration, and prover spectral densities of the longitudinal

accelerations for the 24 segments of "flight" as follows:

Figure	 Spectra shape	 FregLency range

7	 Flat	 0-1 ilz

8
	

11
	

0-2 Hz

9	 "	 1-2 Iiz

The four segments of motion in each figure are for progressively increasing
values of longitudinal acceleration.

The reference axis used was relative to the seated passengers and is shown

in figure 10. The longitudinal accelerations used for this paper were along the

longitudinal axis shown in figure 10. The actual motions of the simulator, as
experienced by the passengers, were measured b y an inertial instrument package
containing three linear accelerometers, one alined with each axis, and three
rate gyros also alined with each axis.

As noted previousl y , 24 segment q of flig:it were used in examtnint

	

longitudinal degree of freedom. These 24 segments were randomlv scatter	 in
two "flights." Each flight was 36 minutes long and consisted of 24, one- and
one-half minute segnnents. The subjects rated a 20-second portion to the center
of each segment. A computer-driven buzzer s ystem was used to 1dentifv this
center portion of the segments. The subjects were instructed to consider only

this 20-second segment of "flight" when making their comfort response rating.
The subjects rated the segments on a seven-statement scale, as follows:

Very comfort Able
Comfortable
Somewhat comfortable
Ar•-ptable

Somewhat uncomfortable

Uncomfortable

Very uncomfortable

4
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Many subjective ride comfort indices have been based on a five-point numerical

scale (see refs. (4) and (7), for example). Accordingly, for analysis purposes

the seven-statement rating scale was converted to numerical values for a fivo-
point scale as follows,

1 - Very comfortable
2 - Comfortable

2-1/2 - Somewhat comfortable

3 - Acceptable
3-1/2 - Somewhat uncomfortable

4 - Uncomfortable
5 - Very uncomfortable

For the data presented herein, average numerical ratings for the 8 to 10
subjects based on this scale and standard deviations from these averages art.
used.

The subjects, in general, were supplied by the Hampton Institute and
consisted of a relatively broad spectra of people. For the total program,

138 passenger "flights" were made using a total of 98 ,persons. No person

rode the same flight twice. A general profile of the persons sed on these
"flights" is Shown in table r.

DATA

The mean RMS values for all six degrees of freedom of the four or five
"flights" performed for each input segment along with the mean subjective ride

comfort response ratings (Rs) are shown in table II. Tlie standard deviation
of the response ratings for the passenger group on each "flig.., segment are

also shown in tahle II. Cross-correlation coefficients for the various motion
components are shown in table III. The four segments of motion on tables 'I and

III for each spectra shape are for progressively increasing values of RMS
Iongitudinal acceleration.

As noted previously, the data presented herein are for longitudinal motion

Inputs and the existence of the other motion components in tables II and III are

the result of simulator characteristics. Until data is available for each
degree of freedom of motion and for combined motions, it will not be clear how

significant the existence of the other motion components are in the subjective

ride comfort responses presented in this paper. The longitudinal RMS accelera-

tions varied from about 1.07 to 7.28 times larger than the vertical or
transverse RMS accelerations that occurred. These can he compared because they

are similar types of stimulation to the longitudinal RMS acceleration. Because
the angular RMS velocities are a different form of stimulation than the linear

accelerations, no comparison as to their relative significance to the longitudinal
RMS acceleration can be directly made. Tt should he noted that the values range

'	 from about 0.59 to 1.60 degrees per second and have an average value of
0.917 degrees per second. Estimate,-i of thresholas of perception of angular

_	 velocity (see refs. (11) and (12)) range from about 0.5 to 4.0 degrees per

second. The values of RMS angular velocity that existed in the experiment to

ai

•1



study the response to longitudinal motion are therefore near the estimates of

thresholds of perception and may not have had important influences oil

comfort responses of this paper. Any analysis made of the data presented herein

should maintain cognizance of the existence and possible influence of motion in

the degrees of freedom other than longitudinal.

The subjective ride comfort responses presented on table II have an average
standard deviation for all 24 segments of 0.579. This compares favorably with
other experiences as, for example, tl ►e average standard deviation of the ride
quality index for the results of reference (7) is 0.758 units of response rating.

The value of 0.579 for this longitudinal acceleration study is somewhat smaller

than that for the vertical and transverse motions of references (9) and (10),
respectively.

As expected, there is a progressive increase in response ratings with

increasing longitudinal acceleration. The variation (table II) is not, however,
a linear function of longitudinal acceleration. The iubjective ride comfort
responses are therefore plotted against the log 10 of ti,e RMS longitudinal
accelerations for t ypical power spectra in figure 11 and for flat power spectra
in figure 12. Thus plotted, the data show a nearly linear variation of the
response, with the 1og 10 of the acceleration stimulus. This observation implies
that the comfort response to RMS longitudinal accelerations conforms to the laws
of psvchophvsical responses, wherein the response var'as with the log 10 of the
stimulus (ref. (13)).

CONC UM I NC RFMARKS

A study ha4 been made on the Langley Vistial-Motion Simulator to examine

the influence o: random longitudinal accelerations on human subjective ride
comfort responses. The effects of two general shapes of power spectral

density of the longitudinal acceleration for three frequency ranges in the 0 to

2 11z region were examined. The data obtained in this studv are presented in
this paper. Although this study was made basically to examine the influence
of random longitudinal accelerations, because of the characteristics of the
simulator there occurred in the stud y some amounts of motion in all other
degrees of freedom. Anal y sis of these data ►mist maintain cognizance of this
fact. The response data al.pear to vary linearly with the 1og 10 of the
longitudinal RMS accelerations indicating congruity with psychophysical law.

6
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TABLF: I , - I'ASSMGFR PROFIU7 FOR
VMS RIDE QUALITY PISOCKAM

Total Passengers - 9P Persons

Scx Iii s t r i bution

Number

Mnl^s	 47

Fcmalvs	 —	 51—	 -- - _---

Aire Distribution

Number %
Sex

Male Fenn c

18-25 yrs 55 56 44% 56%

26-45 yrs 30 31 47% 53'7

4b — yrs 13 13 69% 31%

1

lk	 8
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